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ABSTRACT 

Locating smokestacks in remote sensing imagery is a crucial first step to calculating 

smokestack heights, which allows for the accurate modeling of dioxin pollution spread 

and the study of resulting health impacts. In the interest of automating this process, this 

thesis examines deep learning networks and how changes in input datasets and 

network architecture affect image detection accuracy. This initial image detection serves 

as the first step in automated object recognition and height calculation. While this is 

applicable to general land use classification, this study specifically addresses detecting 

smokestack images. Different dataset scenarios are generated from the massive 

Functional Map of the World dataset, ranging from two to sixty-two classes, and network 

architectures from recent studies are used. Each dataset and network is analyzed in 

their performance by way of F-measure. Image characteristics are also analyzed from 

images that were correctly/incorrectly labeled by the algorithms, providing answers on 

what images the algorithms best predict and what qualities the algorithms cannot 

discern. The smokestack’s accuracy is reported at its highest through a five class 

training dataset, using an Adam Optimizer over six epochs. More or less classes 

returned lower scores, as did using the Stochastic Gradient Descent optimizer. 

Extended epochs did not return significantly higher or lower scores. The study 

concludes that while using more data can be effective in creating more accurate 

algorithms, using less data which is better structured for the problem at hand can have 

a greater effect.  
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1. Introduction 

Finding and labeling objects in imagery is no new task in remote sensing. 

Locating objects and classifying images or regions is a critical task that analysts have 

been performing since the beginning of the use of aerial imagery. From land use and 

scene classification (Kussul et al., 2017; Zou et al., 2015), to specific object detection 

(Durand et al., 2007; Mayer, 1999), it is necessary to understand what is in remote 

sensing images to further analyze and use the information within them. With the 

massive amounts of data being created with modern technology, relying on human 

sorting and classification is becoming slow and inefficient, thus there have been many 

efforts to automate the process (Ma et al., 2019; Zhang et al., 2016; Zhu et al., 2017). 

This automation has increasing use in finding objects within imagery as computers can 

be trained to identify the slightest details and patterns through thorough training.  

Much work has been done in the way of classifying images with machine learning 

(Ball et al., 2017; Mayer, 1999; Song et al., 2019). The most relevant work for this study 

in particular is several large challenges that have been conducted to bring researchers 

together to build the most efficient algorithms. These challenges have been conducted 

on both ground truth imagery and remote sensing imagery and have resulted in widely 

popular algorithms that are still in use years after their creation in this quickly growing 

field. The large draw towards creating these competitions is the lack of large prelabeled 

datasets relative to deep learning, thus the creation of such datasets and researchers 

being invited to use the data in a competitive manner. It is not often that a researcher 

finds largely accessible datasets for a particular object they are trying to detect. 

Therefore, in building a deep learning algorithm, the largest amount of time is often 

https://paperpile.com/c/gA6V0G/Ddt81+2Szjm
https://paperpile.com/c/gA6V0G/FItLV+Smxi9
https://paperpile.com/c/gA6V0G/LCKaY+6InRQ+eo6hQ
https://paperpile.com/c/gA6V0G/ktT22+Smxi9+QieEf
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spent collecting and sorting data; this expensive and time consuming process must be 

optimized. 

The objective of this thesis is to evaluate the impact of input datasets and 

hyperparameters of deep learning algorithms on the smokestack detection accuracy 

(measured in F-score, explained in section 4.4). Figure 1 shows example photos of 

smokestacks as well as other images to be used throughout the training. During the 

training, the study observed effects on the training by viewing how different datasets, as 

well as changing key parameters, affect the accuracy to better understand the 

complexity of the algorithm. This can also serve as a platform to build from, as key 

government organizations are seeking ways to automatically extract information such as 

object heights from remotely sensed imagery; the process which begins with locating 

the objects of interest in imagery, directly building on the type of algorithm employed in 

this thesis. Among those government organizations, the Oak Ridge National Lab 

(ORNL) and the National Institute of Health (NIH) are currently seeking an automatic 

height retrieval algorithm for smokestacks. Their interest in smokestacks extends from 

NIH public health concerns, and the exposure of surrounding and to dioxins, a heavy 

pollutant expended from smokestacks during industrial processes. The NIH has tasked 

ORNL with finding the heights for these smokestacks, and therefore ORNL has offered 

use of their computer systems and datasets to begin exploring this research. This 

research can also be applicable to many other object height related tasks and will be 

valuable to other government agencies which may be interested in object heights 

(Kohlbrenner et al., 2009). 

 

https://paperpile.com/c/gA6V0G/b537O
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Figure 1. Example images from the fMoW dataset. Images A & B show smokestack images, while 

images C, D, and E show stadium, helipad, and windfarm examples, respectively. The fMoW consists of 
sixty-two classes with images varying in object size and quality. 
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2. Literature Review  

2.1 Dioxin Health Interests 

Growing interest in the modeling of dioxin spread from smokestacks has led to 

the need for locating such smokestacks in imagery. Dioxins are heavy chemical 

compounds that exude from smokestacks during industrial processes (mainly 

waste/fossil fuel burning), and they present environmental and health issues by polluting 

surrounding areas (Bertazzi et al., 1998; Pesatori et al., 1998). The toxins can lead to 

different types of cancers, developmental issues, and reproductive health problems, and 

can remain in surrounding animals and vegetation that often end up in human 

consumption, which creates a lasting impact as well as the immediate impact 

(Birnbaum, 1994). Modeling how these dioxins spread from smokestacks is a crucial 

step in deciding how to limit the spread of the toxins and contain them to limit human, 

vegetative, and animal exposure. In order to accurately model the spread of the dioxin 

pollutants, it is crucial to know the heights and locations of the smokestacks 

themselves, as the surrounding pollution area is dependent on the height above the 

ground and how the dioxins may spread while falling back to the ground. Locating 

smokestacks in imagery the first step to this problem. 

2.2 ImageNet - ILSVRC Algorithms 

ImageNet is a large database consisting of labeled ground truth images that are 

used for computer vision and artificial intelligence research (Deng et al., 2009). The 

database consists of over fourteen million images distributed through over 5,000 

subsets, these subsets being derived from WordNet, a large database of subsets and 

synsets (80,000 synsets at the time of publishing) of nouns (Deng et al., 2009; 

https://paperpile.com/c/gA6V0G/Iri1C+Qzqko
https://paperpile.com/c/gA6V0G/X6BNe
https://paperpile.com/c/gA6V0G/gnbqE
https://paperpile.com/c/gA6V0G/KfcDN+gnbqE
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Fellbaum, 1998). The sysets range from plants, animals, natural objects, to people, 

artifacts, and geological formations (Figure 2). ImageNet images are used as pre-

training images for deep learning algorithms as well, and therefore are necessary to this 

study.  

The Large Scale Visual Recognition Challenge (LSVRC) hosted by ImageNet is based 

on the millions of pre-labeled ground images hosted by ImageNet, which are provided to 

researchers to train and test their algorithms to achieve the highest accuracies (Deng et 

al., 2009). Many of the state-of-the-art image classification and object recognition 

algorithms have resulted from the ImageNet LSVRC, such as AlexNet, ResNet, 

GoogLeNet, ZFNet, and DenseNet (He et al., 2016; G. Huang et al., 2017; Krizhevsky 

et al., 2012; Szegedy et al., 2015; Zeiler et al., 2011). These Convolutional Neural 

Networks (CNN), are deep learning algorithms which placed high in the LSVRC 

challenge and some of which built off the previous years’ winners as well to create more 

efficient algorithms.  

 

 

 
Figure 2. (a&b). The ImageNet Synset structure is divided into major categories (a), that are 

further broken down into more specific subsets and groups. such as groups of animals, arachnids, and 
spiders, and specific spider types (b). 

 

https://paperpile.com/c/gA6V0G/KfcDN+gnbqE
https://paperpile.com/c/gA6V0G/gnbqE
https://paperpile.com/c/gA6V0G/gnbqE
https://paperpile.com/c/gA6V0G/IecW9+RzToe+IB4IL+SBpda+6faUG
https://paperpile.com/c/gA6V0G/IecW9+RzToe+IB4IL+SBpda+6faUG
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2.3 fMoW Challenge Data 

The Functional Map of the World (fMoW) challenge is a similar challenge to the 

ILSVRC, providing researchers with training and testing data to implement their original 

algorithms on. However, the fMoW challenge specifically focused on the labeling of 

remote sensing images (Christie et al., 2018). The fMoW challenge was also only run 

for one year in 2017, as opposed to the 7 year annual run of ImageNet challenge (2010-

2017). Researchers and teams were provided with a baseline algorithm, using a 

modified DenseNet architecture (Christie et al., 2018). The training and testing data 

provided has been made publicly available after completion of the challenge, which 

allows continuous advancement to be made on the achieved results by competitors.The 

challenge data has prompted many researchers to continue to develop algorithms on 

the data while pursuing higher accuracies and lower training times. 

2.4 Deep Learning CNN Design 

Deep learning is a term which encompasses many different disciplines, all 

working towards a similar goal of more accurate machine learning. Convolutional neural 

networks (CNNs), autoencoders, Boltzmann Machines, and VGG are a few of the major 

examples of deep learning methods (Guo et al., 2016; Zhu et al., 2017). CNNs, as the 

name would suggest, consist of multiple layers of convolutional layers that form a 

network roughly resembling that of the neural system of humans (Shanmuganathan, 

2016). The layers perform convolutions, or filters, over a certain area of the image, and 

move on to the next area, until covering the entire image area. Values are combined 

and output based on the specific layers used and this output is used as input for the 

next layer, or held off from consideration until the last fully convolutional layer, typically 

https://paperpile.com/c/gA6V0G/yV32
https://paperpile.com/c/gA6V0G/yV32
https://paperpile.com/c/gA6V0G/AQ6Ke+6InRQ
https://paperpile.com/c/gA6V0G/I9hr
https://paperpile.com/c/gA6V0G/I9hr
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the last layer of the network. Other layers of CNNs include pooling and connected 

layers (Ball et al., 2017).   

The design of CNNs falls on a few basic traits, called hyperparameters; changes 

within these hyperparameters affect how the training is run (Song et al., 2019). Perhaps 

the most important hyperparameter is the epoch count. Epochs are a complete session 

of training where the algorithm views every image making its prediction, and receiving a 

verification, then adjusting based on its wrongness. Epochs can be increased for longer 

training sessions, though this will of course increase training time, and algorithms will 

not continually benefit from infinitely extended training sessions. To shorten the number 

of epochs needed, algorithms are commonly pretrained on data prior to use. Pretraining 

is the use of similar data to the target data to create roughly optimized networks that 

require only fine tuning on the target data, saving time (Z. Huang et al., 2017; Lévy & 

Jain, 2016). 

The loss function is another critical component of the network architecture. Loss 

functions tell an algorithm after each epoch how far off it performed from the validation 

set. The optimizer function takes the loss values from the loss function, and decides 

how to best optimize the algorithm’s functions and layers to perform better. Some 

optimizers require more work on the user end than others, and certain optimizers 

perform better for certain tasks. Two commonly used optimizers in image classification 

are SGD and Adam (Bera & Shrivastava, 2020). SGD requires more input on 

hyperparameters, while Adam uses self adaptive values that adjust through the training 

epochs (Kingma & Ba, 2014; Le et al., 2011).   

https://paperpile.com/c/gA6V0G/QieEf
https://paperpile.com/c/gA6V0G/ktT22
https://paperpile.com/c/gA6V0G/oBrHq+EFrc
https://paperpile.com/c/gA6V0G/oBrHq+EFrc
https://paperpile.com/c/gA6V0G/fsw9
https://paperpile.com/c/gA6V0G/oq130+9vis
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2.5 Hydra Architecture 

One of the most recently published papers expanding upon the fMoW dataset is the 

work of Minetto et al., creating their Hydra framework. Hydra is an ensemble of 

networks aimed at decreasing training time on the data while keeping results 

competitive with the competition results (Minetto et al., 2019). Hydra makes use of both 

ResNet and DenseNet architectures (Figure 3) for its functionality. Eight DenseNet 

algorithms and four ResNet algorithms are run simultaneously to explore the most 

efficient path towards a global minimum, and providing the highest F-Score. Using this 

multi-path method of searching allows for a more vast exploration of potential solutions, 

providing a higher likelihood of reaching the absolute global minimum. The Hydra 

ensemble uses a roughly optimized initial path, which is terminated early in the process, 

then allows the twelve algorithms to explore from this point to achieve the highest 

accuracy (Minetto et al., 2019). The Hydra network achieved accuracies that would 

have fallen in the top three scores during the challenge, however this was done in less 

training time due to their architecture and network structure, which consisted of ResNet 

and DenseNet algorithms using 11 training epochs, and an Adam optimizer.  

3. Data  

The algorithm was implemented on the fMoW dataset (for more in depth details, 

reference (Christie et al., 2018), but important details are summarized below). The 

formation of the dataset was to aid and encourage the advancement of image and 

scene classification algorithms, by allowing public use of the already classified and 

labeled training and validation imagery sets. The fMoW dataset provides sixty-two 

classes of remote sensing images (classes such as hospitals, car dealerships, airports, 

https://paperpile.com/c/gA6V0G/2Ht0
https://paperpile.com/c/gA6V0G/2Ht0
https://paperpile.com/c/gA6V0G/yV32
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Figure 3. Hydra’s network architecture is shown with its two major bodies, pretrained on ImageNet, which 
then receive the preliminary training body weights before being split into the twelve heads that make up 

the hydra ensemble. Figure and caption paraphrased from (Minetto et al., 2019). 

  

https://paperpile.com/c/gA6V0G/2Ht0
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smokestacks, race tracks, shopping malls, etc.). Figure 1 shows examples of images 

found in the dataset. The original challenge also included a false detection class that 

contained none of the other sixty-two classes. In total, the dataset consists of 470,086 

images, with 295,843 allocated to training samples, and the rest reserved for validation 

images. The data contains metadata (UTM Zone, timestamp, ground sample distance, 

sensor angle, and bounding box) from the images as well, which was not given in full to 

competitors during the challenge, but was released after the competition concluded 

(metadata not used for this research) (Christie et al., 2018). The data formats released 

included full sized TIFF RGB images (pan sharpened and multispectral) as well as 

a smaller, compressed dataset consisting of JPEG RGB images to reduce the overall 

size of the data (Minetto et al., 2019). Shown in Figure 4, within each class, there are 

sets of specific image sites, which include multiple images of the same object, providing 

a temporal aspect to the object as well as differing viewpoints; this being helpful in 

discerning between two classes when time is a major factor, such as whether a 

structure classifies as a smokestack or a tower, as the smokestack’s temporal images 

may include smoke being produced whereas a tower would not (Christie et al. highlight 

being able to identify office buildings by their parking lot occupancy during business 

hours). The images are derived from all over the globe, spanning 59 UTM zones, and 

over 14 years from the earliest to most recently taken images (Christie et al., 2018).  It 

should be noted that the fMoW dataset does not have equal distribution in the number 

of images per class, and that varying image counts between each class may affect 

class diversity. The Oak Ridge National Lab has the fMoW dataset downloaded to their 

database in its full extent (however the dataset does not include the 63rd class “no 

https://paperpile.com/c/gA6V0G/yV32
https://paperpile.com/c/gA6V0G/2Ht0
https://paperpile.com/c/gA6V0G/yV32
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detection”), so the original sized TIFF images are used by the algorithm. Using the 

PyTorch library, which provides deep learning architectures and other supporting code 

(optimizers, loss functions, etc), algorithms can easily be instantiated with desired 

parameters. The library also allows users to create pre-trained or untrained models to 

build. 

4. Methods 

4.1 Identifying Smokestacks Using the ResNet Algorithm 

The methods of this research follow two main training variables. The first variable 

consists of dataset creation. Different dataset scenarios were created for this research, 

both two-class and multi-class datasets. The datasets created are meant to test the 

viability of different classes of data being collected against the smokestack class, and to 

see how the data gathered and its organization may affect the accuracy of identifying 

 

 

 

 
Figure 4. The fMoW structure is divided into the sixty-two major categories as seen to the left, 

which are further broken into specific instances, and each instance may have several images on a 
temporal scale, metadata files for each image, and different data types. 
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smokestacks. From the original 62 classes, the smokestacks classes are tested in two 

class scenarios, and multi class scenarios to view how the varying datasets tested 

influenced the smokestack’s accuracy.  

The second testing variable is the hyperparameters. Hyperparameters of the 

algorithm have direct influence on accuracy and on training time, and in order to explore 

and further understand the algorithm, four algorithms were used with different 

hyperparameters. The algorithm is run with varying amounts of epochs, two different 

optimizers, as well as without pretraining. 

4.1.1 The Algorithm Selected 

The algorithm used for the smokestack identification is Residual Net (ResNet), a 

popular CNN which was created by He et al. in response to the 2015 ILSVRC, but also 

due to the general need of more robust detection algorithms (He et al., 2016). ResNet 

upon its release was among the best classification algorithms as it won the ImageNet 

LSVRC-2015 contest with a leading error rate of approximately 6.7%. ResNet is 

commonly used for image classification algorithms (the problem faced in this thesis), but 

ResNet is also commonly used for specific object detection algorithms as well. This is 

partial motivation as well for the ResNet selection, as the algorithm can be expanded to 

object detection of the smokestacks, aiding in the automation of height retrieval.  

The ResNet algorithm being utilized is pre-trained on ImageNet imagery, a 

concept widely used in machine learning to reduce training time as well as make better 

use of the data collected. Building the ResNet algorithm, initially a short training session 

of five epochs was used. This is done to allow the exploration of using more training 

https://paperpile.com/c/gA6V0G/RzToe
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epochs as a variable in the methods. Through expanding the epochs and changing 

optimizers, the algorithm is able to mimic the architecture used in the Hydra study. Both 

the original fMoW baseline algorithm and the Hydra algorithms use the Adam optimizer 

function. To compare the effectiveness of the optimizer, the ResNet algorithm for this 

thesis begins with the SGD optimizer.  

4.1.2 Changing the Algorithm 

The algorithm used in this study initially employs a 4 epoch training phase, with 

the SGD optimizer and cross entropy loss function. After this base algorithm was run for 

every dataset created, the optimization function was changed to an Adam optimizer 

(Kingma & Ba, 2014). Mimicking the architecture used in the Hydra network, it is 

possible to compare timing and accuracy to other commonly used hyperparameters. 

The design behind the Adam optimizer is that it adapts its own momentum parameter, 

which is linked to the learning rate (Kingma & Ba, 2014). By implementing the Adam 

optimizer there is one less hyperparameter to decide on. Implementing both optimizers 

across the datasets allows the comparison of whether or not Adam provides higher 

accuracies in every situation.  

The algorithm is trained for 4 epochs throughout the majority of the algorithms. 

However to show the effects of longer training sessions on data, the highest accuracy 

dataset is run from 5 epochs to 15 epochs. As training sessions became longer, the 

deep learning algorithms began to give diminishing returns, and even started to stray 

away from the global minimum, giving less accurate results as it progresses into longer 

training sessions. Finally, the last algorithm ran was an untrained network (in order 

words, lacking the ImageNet pretrained network values) to reiterate the value of 

https://paperpile.com/c/gA6V0G/oq130
https://paperpile.com/c/gA6V0G/oq130
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ImageNet pretraining on algorithm training times and accuracies. Figure 5 gives an 

overview on methods used in this research. 

4.2 Dataset variances 

As the main part of the study, different datasets are used throughout testing in 

order to measure the effectiveness of adding more data, and more data classes, to test 

the best method for discerning your class of interest. Seen in Figures 6 and 7, the 

datasets prepared ranged from two classes (smokestack versus non-smokestack) up to 

thirty classes and sixty-two classes, with intermediate steps in between. For each 

dataset, separate training and validation folders were made to ensure the correct 

number of images would be processed by the album. The originally planned single step 

approach (consecutively training new algorithms at every number of classes between 

two and sixty-two) was decided against as time to create the dataset, train, and validate 

the algorithm would have consumed significant amounts of time, and the general trend 

in results is still seen by taking larger steps between class sizes. The datasets have 

been broken up into two categories: the first being two class datasets, and the second 

being multi-class datasets. For the two class datasets, images from different classes are 

bound into one class together, as a general non-smokestack class, and that the 

smokestacks are tested against this class. The multi-class datasets are meant to 

simulate a researcher creating their own imagery sets, and taking the time to properly 

sort their data into their respective classes, versus piling all data into two classes.  

4.2.1 Two Class Dataset 

 Multiple two class datasets were created to test the viability of a simple 
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Figure 5. Flowchart showing the basis of the methodology. At the top level, training images are 

sorted into their classes (smokestack, highway interchange, car dealership, etc), and put into datasets. 
Note smokestacks are the recurring class in each dataset, and there are also no other classes explicitly 
set to recur. The training sets are passed through the different ResNet algorithms. The results recorded 

are the smokestack f-score, the confusion matrix, and the training time in minutes for every algorithm run.  

  



www.manaraa.com

 16 

smokestack versus non-smokestack model in building datasets. In every two class 

dataset, the smokestack class remains unchanged, consisting of every available 

smokestack image in the dataset, totaling 3429 training images and 451 validation 

images. However the makeup of the negative class is altered between each dataset. 

The first case created saw the negative class consisting of just one other class one to 

test the effectiveness of learning the difference between two classes and then testing on 

all the classes (or in real world terms, testing the viability of training against one class 

then applying to general data to sort out smokestacks).  For the second case, the 

negative class consists of three other classes. This simulates a researcher selecting 

images of a few different types of objects to form a defined negative class. For this 

class, the selection of three classes was shuffled and the average smokestack f-score 

taken. In the last case, the negative class created consisted of 5% of the entire dataset 

(resulting in 14620 images) and this was to simulate finding all types of images and 

culminating them into one inclusive negative class. Figure 6 shows the makeup of the 

negative classes for the two class datasets. All renditions of the two class scenarios 

were tested against a validation set consisting of smokestacks versus a negative class 

containing images from every class. 

4.2.2 Multi-Class datasets 

 The next classes set up were multi-class datasets. Where the two-class dataset 

consisted of smokestacks versus non-smokestacks, the mutli-class datasets force the 

algorithm to discern between each class (for instance smokestack versus hospital, 

highway, office building, etc). The aim of these classes is to sharpen the algorithm's 
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Figure 6. The two class datasets are composed from three different negative class compositions. Dataset 

A’s negative class consists of one other class, chosen at random from the fMoW dataset. Dataset B’s 
negative class consists of three classes chosen at random. Dataset C uses 5% of the images from every 

class in the dataset, forming a much larger and more comprehensive dataset.  

  



www.manaraa.com

 18 

definition of what isn’t a smokestack, versus the negative class being a catch-all for 

borderline probability predictions (the algorithm thresholds predictions at 50%). It is 

reasonable to hypothesize that having numerous classes would shift a borderline (but 

incorrect) non-smokestack prediction back towards a more confident smokestack 

prediction as the other classes become more defined in their make-up. 

Eight multi-class datasets were created: five, six, seven, ten, fifteen, twenty, 

thirty, and sixty-two class datasets (Figure 7). As mentioned, intermediate steps 

between the larger datasets were deemed sufficient as run times began to increase 

significantly and the general trend in time and accuracy remained similar between 

jumps.  

4.3 Accuracy Assessment 

 The algorithms’ success is being automatically measured by a function of the 

PyTorch library, which measures accuracy by how many correct predictions there were  

among the total number of images. While this number gives insight to how many correct 

predictions there were, the number does not tell a full story of an algorithm’s 

performance. A largely common issue in deep learning algorithms is overfitting data, 

and simply telling the accuracy in this form does not explain the algorithm’s degree of 

overfitting. Therefore, the metric of F-score is used to report the accuracy of the 

algorithm for this study. F-score is a popular accuracy assessment tool used for deep 

learning. While this number does not directly answer the question of how many images 

were guessed correctly, it does tell the bigger story on the algorithm’s false positives, 
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Figure 7. The multiclass datasets consist of individual negative classes, as opposed to a singular 

negative class as in the two class dataset. The algorithm is tasked with identifying features of each class 
separately.  
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false negatives, and true positives as a whole. The F-score is calculated from the 

confusion matrix of the validation set; the confusion matrix is a graph showing ground 

truth labels plotted against predicted labels on opposing axes, showing the number of 

correct and incorrect predictions by the algorithm, as well as which classes the incorrect 

predictions were labeled as. A confusion matrix from this research is shown in figure 8.  

Using two lesser metrics, precision and recall, the F-score offers a more 

complete narrative about a particular class. The F-score can also be applied to the 

entire dataset by averaging the individual class scores and their weights. The equation 

to calculate F-score is shown in Equation 1. The F-score is not perfect, as varying 

amounts of false positives and false negatives can produce similar F-scores, but the 

number is far more telling than a general accuracy percentage. After each training 

scenario, an evaluation dataset was run and each class' F-score was measured and 

reported. A CSV file is also exported, containing the individual file paths and the 

algorithm’s prediction label versus the true label, as well as prediction confidence 

values. The accuracies reported through the results section refer to the F-score, and not 

the algorithm generated score.  

5. Results 

5.1 Two Class Datasets 

The two class datasets return polarizing results. Reviewing the results from scenario A 

(Figure 9) shows examples of extreme overfitting. The algorithm returned a 
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Figure 8. Confusion matrix of the ten class dataset. The main diagonal shows true positive 

predictions, while the columns show the false positive predictions for a specific class, while the rows show 
the false negative predictions for a specific class. High values that occur off the main diagonal show 

classes that are more difficult for the algorithm to distinguish. Class names of the indices: 0, aquaculture; 
1, burial site; 2, debris/rubble; 3, interchange; 4, multi-unit residential; 5, single-unit residential; 6, 

smokestack; 7, swimming pool; 8, tunnel opening; 9, water treatment facility  

 

 

 

Equation 1. The formula for calculating the F-Score metric is shown, as well as the needed 
parameters for the computation, precision and recall. 
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low average F-score of 0.33 over ten runs (Table 1 displays the ten runs and their 

smokestack F-scores). The F-scores range from 0.01 to 0.61, with the majority being in 

the 0.4 to 0.5 range. The confusion matrices show the algorithm is largely overfitting the 

data; generally 80% of the smokestacks are correctly predicted, while large numbers of 

the non-smokestack class were also misidentified as smokestacks. The output is also 

indicative of underperforming when underfitting the smokestacks predictions, giving also 

no smokestack predictions (some runs saw as few as eight correct smokestack 

predictions, leaving 433 that were predicted as non-smokestack).  

The second scenario two-class dataset did return better results, giving a F-score 

of 0.54 for the smokestacks class. While better, still examples of extreme 

over/underfitting are seen. The third two-class scenario performed the best, returning a 

smokestacks F-score of .62 using a total of 18,050 images. This score is competitive 

with the higher scoring multi-class datasets. It displayed a much lower number of false 

positives, however there are a greater number of false negatives. Confusion matrices 

for these datasets are also shown in Figures 10 and 11. 

 

Table 1. F-score values return from the two class dataset (scenario A).  

 Run 1 Run 2 Run 3 Run 4 Run 5  Run 6 Run 7 Run 8 Run 9 Run 10 AVG 

F-Score 0.008 0.54 0.43 0.10 0.40 0.49 0.05 0.61 0.13 0.50 0.36 
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Figure 9. Confusion matrix representative of the two-class datasets (scenario A). The classes relative to 
the indices are 0: non-smokestacks, 1: smokestacks.  
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Figure 10. Confusion matrix representative of the two-class datasets (scenario B). The classes relative to 
the indices are 0: non-smokestacks, 1: smokestacks. Note the decrease in false positives in cell [0, 1]. 

 
 
 
 
 
 

 
Figure 11. Confusion matrix representative of the two-class datasets (scenario C). The classes relative to 

the indices are 0: non-smokestacks, 1: smokestacks. Note the much lower number of false positives in 
cell [0, 1]. 
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5.2 Multi-Class Datasets 

The results of running the algorithm over different sized multi-class datasets 

show peaks and troughs in accuracy of smokestacks as output sizes increases, while 

training times show significant increase as the number of images increase. The training 

times as a response to the increasing number of classes (and therefore growing image 

count) are shown in Figure 12. Through the thirty class dataset, the algorithm training 

times follow an exponential growth pattern, as opposed to a linear trend that may be 

expected. The exponential trend is broken when the jump to sixty-two classes is made; 

the algorithm becomes slightly more efficient, but still far from linear.  

The multiclass datasets, using both SGD and Alex optimizers display an upward 

trend in smokestack accuracy as the number of classes increases from three to five 

classes. After the peak in smokestack F-score value in the five class dataset, the 

accuracy begins to suffer a loss as classes increase to thirty classes. After the thirty 

class dataset, a sixty-two class dataset was run in order to compare to the hydra 

results, and the smokestacks individual F-score increased by 22 percent.  

5.3 Stochastic Gradient Descent vs Adam Optimizer 

In switching from the SGD optimization to the Adam optimizer (used in the Hydra 

network) a jump in smokestack F-score is seen, as well as slightly longer training times 

in most cases. The Adam optimizer F-scores are generally .6% higher, with some class 

sets giving differing or even lower results. The Adam scores follow the same trend of 

accuracies through classes as the SGD optimized algorithms, as seen in Figure 13. The 

training times jump anywhere from 8% to 27% increases in training time using the Adam 

optimizer, Figure 14 shows the differences in training times vs training image count. 
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Figure 12. The base algorithm’s training time response to an increasing dataset.  

 
 
 
 

 

 
Figure 13. Graph displaying the smokestack F-score as the number of output classes increases using 

both SGD and Adam optimizers. 
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Figure 14. Graph displaying time differences between the SGD and Adam optimizers. 

 

 

 

5.4 Longer Epochs 

After running the algorithm with the different optimizers, the base algorithm (4 

epochs, SGD, 5 classes) was run with longer training sessions. The training sessions 

remained consistent in the results returned, having no peaks or troughs in accuracy 

through the longer epochs. The average accuracy returned was 0.725. Small 

fluctuations from the average are seen but none that would suggest a significant 

difference from the average. Figure 15 shows the fluctuations in accuracies from five to 

fifteen epochs, using the same training and validation sets each time, as well as the 

same ResNet50 algorithm architecture. Several longer training sessions were run on 

bigger datasets to test the idea that more data required more training but the results did 

not differ from the ones seen in Figure 15.  

5.5 Non pretrained Networks 

The network run without pretraining did not fare well in accuracy. The network 

was run with five classes over 20 epochs. One class did not receive any predictions (the 
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Figure 15. Graph showing the deviations in accuracy as training epochs are increased. 

 

  



www.manaraa.com

 29 

algorithm did not assign any predictions of class index zero), and the F-score achieved 

for smokestacks was .03 with 443 false predictions of smokestacks being mislabeled. A 

total of 8 smokestacks were predicted correctly, and only 48% of all validation images 

were correctly predicted. Figure 16 shows the confusion matrix for the network’s 

validation set. The effects of pre-training are well seen through this data. 

5.6 Example Images 

Viewing images and their predictions by the algorithm provides insight on which 

types of images are being correctly labeled and which images prove to be difficult for 

the algorithm to distinguish. Beginning with the images that were guessed correctly 

across all algorithms run (that is, every training input scenario provided an algorithm 

which correctly identified the image), it is clear that the algorithm clearly guesses 

smokestacks which exhibit a few key characteristics. Figure 17 (a-d) shows correctly 

labeled smokestacks that have prominent shadows extending from their base. In 

reviewing the images, most images with prominent shadows were correctly identified by 

the algorithms. Another characteristic that was often picked up on by the algorithms is 

the presence of patterns on the smokestacks. Some smokestacks contained no pattern, 

and are a solid color, while others contain a striped pattern. 

The striped smokestacks were typically labeled correctly by the algorithm, 

presumably because such patterns aren’t seen in other images. The stripes are 

prominently displayed in Figures 17c and 17d. Another characteristic displayed by 

Figure 17 are off-nadir images. Most images that were taken directly on-nadir do not 

allow any of the major characteristics of the smokestacks to be displayed (namely, their 

height and profile above the surrounding environment, providing the profile seen in the 
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Figure 16. Confusion matrix of the non pre-trained network. While there are two classes with high values 
of high positives, there are also high numbers of false positives for both classes. The other classes also 
received little to no labels. The class labels for this matrix are as follows, 0: aquaculture, 1: debris/rubble, 

2:interchange, 3: multi-unit residential, 4: smokestack. 
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Figure 17a. Image of smokestack which was correctly labeled by all algorithms. Major 

characteristics are the tall smokestack profile and the strong shadows. 
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Figure 17b. Image of smokestack which was correctly labeled by all algorithms. The smoke from the 

smokestacks often leads to a correct prediction. 
 
 
 
 
 
 
 
 

 
Figure 17c.  Image of smokestack which was correctly labeled by all algorithms. The striped pattern on 

the smokestack was typically predicted correctly. 
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Figure 17d.  Image of smokestack which was correctly labeled by all algorithms. The striped pattern on 

the smokestack was typically predicted correctly. 
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smokestacks in the aforementioned figures). On-nadir imagery must rely on only 

shadows of the smokestacks, as well as the presence of smoke being expended from 

the smokestack, which is likely to aid the algorithm in labeling as well, as none of the 

other features in the fMoW dataset have this characteristic.  

Some images, the algorithm struggled greatly with, and none of the training 

scenarios could produce correct labels for the images. These images often were difficult 

even for a human observer to pick out the smokestacks; Figure 18 (a-e) depicts 

examples of images that were incorrectly labeled across all algorithms. Figure 18a does 

contain the prominent shadow, but the image displays lower contrast and a near on-

nadir viewpoint of the smokestack. Figure 18b displays the prominent shadows as well, 

but due to the time of day (judged by surrounding environment shadow lengths), the 

high solar angle does not allow for the shadows to have longer lengths as seen in the 

other example images shown. The near on-nadir photo again prevents the tall 

smokestack profile from appearing. While Figures 18c and 18d both display off-nadir 

images, one image displays a much larger area, therefore the smokestack appears very 

small and not a prominent feature, and the other is shot from the shadowed side of the 

landscape, and therefore much of the photo is dark and lacks contrast. The smokestack 

shadow is difficult to make out for a human observer, and the structure itself is easily 

mistaken for a shadow or tree. As an example of low contrast being difficult for the 

algorithm to locate features, Figure 18e shows two examples of the same location, but 

in different weather conditions (the image appears to be blocked by light cloud 

coverage). While a human observer may not be misguided by this, the algorithm 
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obviously struggles when contrast is low, as the high contrast image (top) received 

correct labels through all data scenarios, while the bottom received no correct labels.  

6. Discussion 

Employing the algorithm architecture used in the Hydra framework by Minetto et 

al. gives a comparison value of using the metadata from the competition during training, 

vs training only using images. The original fMoW baseline algorithms were also run on 

metadata only, to understand the effect the metadata has on algorithm success, and 

reported an F-score of 0.2 for the smokestacks, running a 62 class algorithm (Christie et 

al., 2018). Although run on a different deep learning model, this shows the importance 

of metadata, and can help to explain the departure of the accuracies reported here 

versus the Hydra papers, as the only difference in the architectures is the lack of 

metadata inclusion on the end of the network. Another facet of this research is looking 

within the Hydra paper, and seeing how input dataset manipulation affects the 

outcomes of one class of interest. Minetto et. al post their final accuracies for the entire 

63 class dataset (0.781, including the false detection class) but do not go into detail of 

how the specific classes performed beyond a confusion matrix (Minetto et al., 2019). 

Replicating the architecture and altering the input datasets/output formats provides 

insight to how certain classes may respond to larger or smaller datasets. Minetto et al. 

also show how the Hydra ensemble responds to longer training sessions, confirming the 

results seen in this study, where there is an asymptotic leveling of the accuracy as the 

epochs increase.  

The two class datasets are generally returning moderately low F-scores (~.5), 

which is largely due to overfitting. In outright accuracy, they are returning roughly 80% 

https://paperpile.com/c/gA6V0G/yV32
https://paperpile.com/c/gA6V0G/yV32
https://paperpile.com/c/gA6V0G/2Ht0
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Figure 18a.  Image of smokestack which was incorrectly labeled by all algorithms. The on-nadir imagery 

typically was not well predicted by the algorithm. Bounding box added. 
 
 
 
 
 
 
 

 
Figure 18b. Image of smokestack which was incorrectly labeled by all algorithms. The short shadows 

combined with near on-nadir imagery was incorrectly predicted. Bounding box added. 
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Figure 18c. Image of smokestack which was incorrectly labeled by all algorithms. The high amounts of 

surrounding environment and small smokestack profile/shadow did not receive correct predictions 
throughout the tests. Bounding box added. 

 
 
 
 
 
 

 
Figure 18d. Image of smokestack which was incorrectly labeled by all algorithms. The image is taken from 
the shadowed side, which makes the smokestack difficult to locate among other dark objects. Bounding 

box added. 
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Figure 18e. Two smokestack images of the same location, but one photo is lower contrast, likely due to 

weather conditions (clouds) at the time of photo. Photo A received all correct labels, while photo B did not 
receive any correct labels. Bounding boxes added. 

  

 

 

 

 



www.manaraa.com

 39 

of correct smokestack predictions. Very small amounts of smokestacks are being 

mislabeled, while on the other side of the argument large numbers of non-smokestacks 

are being mislabeled as smokestacks; one run in particular saw 1118 (out of 1876) 

negative images predicted to be smokestacks. The runs that are not producing largely 

overfitted data are instead returning largely underfit smokestack data. Training an 

algorithm against one class of objects does not appear to be an effective strategy in 

detecting smokestacks in imagery. While the 3-class algorithm did perform better, the 

best use of data appeared to be a large two class dataset, consisting of a large negative 

class, with as many types of image classes as possible (simulated by adding 5% of the 

entire dataset). This was to be expected, however it was worth testing the viability of 

using smaller test groups; larger test groups with not much definition can sometimes 

return low accuracy due to confusion of the algorithm from overly complicated or vague 

outputs.  

With adding more data and more specific outputs via the multiclass sets, the 

algorithm is able to properly guard against underfitting/overfitting on the data 

predictions. However at a certain point, it is seen that the outputs are so vast, the 

algorithm gets overwhelmed and the number of sparse FP/FNs begins to add up, 

lowering the F-score. Perhaps this is why the peak in the accuracy occurs at 5 classes. 

Much research has been done connecting the ‘overstimulation’ of an algorithm to its 

tendency to overfit data, and applying dropout layers to reduce the amount of inputs 

going into each training epoch. Utilizing dropout layers in their algorithms proved to 

reduce overfitting and error in the algorithm (Srivastava et al., 2014). Asking a deep 

learning algorithm to output too much or too little can lead to outputs that are difficult to 

https://paperpile.com/c/gA6V0G/CBcB
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discern against (giving high false positive/false negative values), or outputs that are too 

vague (usually returning extremely high false positive values) respectively. In structuring 

the output (binary output vs multiple outputs), the input data is also affected. Another 

issue that arises with input data is the quality of the data. Some images in the 

smokestack class (and presumably other classes) are difficult even for a human 

observer to identify the smokestack in the image. Images like these may only 

convoluted the algorithm’s understanding of smokestack image patterns. 

Shown in the results here, the smokestacks class does not perform its best when 

run in the full dataset, but rather with a smaller dataset. In viewing the incorrectly 

labeled images from the smokestack class, it also stands to reason that the training 

images fed to the algorithm could be better selected, both in the smokestacks class and 

other classes. Poor image quality and general bad selection lead to a decrease in 

algorithm performance, as even a human observer may struggle to find the objects of 

interest in certain images. 

The Adam optimizer appears to offer slightly higher accuracy at the penalty of 

slightly longer training times. The longer training times are likely attributed to the Adam 

optimizer adapting its own momentum values based on the previous epoch, a function 

within the optimizer which takes extra time to run. But these self-adapted and fluid 

momentum values allow the Adam optimizer to return higher accuracy values. In deep 

learning algorithms it would appear that self regulating, and therefore fluid, 

hyperparameters return the best values, as the training process is not a static process, 

suggesting that the hyperparameters should not be static either. This nature is 

somewhat seen in the Hydra research. The Hydra network uses on-line augmentation, 
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creating a newly augmented dataset for each epoch (Minetto et al., 2019). The use of 

online augmentation, as opposed to augmenting data before the training, begins allows 

for a dynamic training set, which gives the algorithm a more complete understanding of 

what it is trying to learn through the data.  

Using more epochs in the training session did not create a more accurate 

algorithm, negating the need for longer more intense training for the problem addressed 

in this thesis. Potential reasons for this are the algorithm being pre-trained on ImageNet 

and already being near max efficiency of image recognition. The other train of thought 

would be that the algorithm has been pre-trained too far on the ImageNet data, and 

therefore cannot change the weights within the body of the network enough to further 

maximize its efficiency (see figure 19, displaying the body vs the head argument). Pre-

training and the concept of transfer learning is used not only in remote sensing, but in 

other instances of limited data (in the medical field, (Lévy & Jain, 2016), general object 

recognition, (Schmitz et al., 2014)). It has been studied that algorithm performance can 

not only be increased by modifying the training process, but also by modifying the pre-

training process (Guo et al., 2016). This, along with additional dropout layers, is 

something that should be considered to increase the algorithm accuracy, should this 

research be continued.  

There were several limitations to the study that should be addressed. While the 

results showed that the five class dataset returned the highest value, this result may 

only be applicable to this dataset, i.e. to state that a 5 class dataset would return the 

highest smokestack F-score for every dataset would be an improper conclusion. The 

results here are highly dependent on the distribution of images between the classes, 

https://paperpile.com/c/gA6V0G/2Ht0
https://paperpile.com/c/gA6V0G/oBrHq
https://paperpile.com/c/gA6V0G/xrEtu
https://paperpile.com/c/gA6V0G/AQ6Ke
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Figure 19. Potential effects of pre-training. As the randomized network progresses through pre-training, it 

is optimized towards the global minimum of the pre-training set. It is conceivable that the network is 
trained away from the optimal path to the global minimum of the training set (shown in blue). This graph is 

for conceptualization only; the axes have no value, the paths are arbitrary. They are only meant to 
visualize the stray from the global minimum. 
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and the images within the classes themselves. A multi-class dataset could very well 

have an imbalanced distribution of images, with one class having significantly less 

images than the others, which affects how well the algorithm is able to learn the defining 

characteristics. Similarly, should a new dataset be applied, one where smokestacks are 

tested against different classes than ones provided in the fMoW set, the smokestacks 

could require more, or less images to achieve the highest F-score. Another limitation is 

the photos themselves. Photos which exhibit characteristics from multiple classes (for 

example, a windmill that stands over farmland) creates confusion for the algorithm. It is 

likely the algorithm would select the feature that is most largely depicted. This then 

means that images of certain features must be taken so that the feature fills the image. 

As seen with many of the example images, this is not that case typically.  

 

7. Conclusion 

 The highest scoring training data, in the instance of the smokestacks class tested 

against fMoW data, is a five class training/output set; this data arrangement sharpens 

the non-smokestack definition enough to guard against overfitting, but does not 

overload the algorithm with output classes, and creating mass amounts of false 

positives/false negatives within the smokestack class. While this research is applied to 

smokestacks specifically, it shows the general concept of why it is important to consider 

not only the training inputs for a machine learning algorithm, but how the inputs are 

structured as well. In implicating a deep learning algorithm, it is important to consider 

how the training data is gathered and structured. In searching for smokestack images 

among thousands of images from other classes, the makeup of the non smokestack 
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classes directly impacts the performance of the algorithm, that being its ability to 

correctly label smokestack images and not overfit the data to include non-smokestacks 

as positive predictions. It is seen here that continuing to add classes only decreases the 

accuracy of the smokestacks class, yet diluting the training data to a simple 

smokestacks vs non-smokestacks situation also does not provide the highest accuracy 

values.  
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